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ABSTRACT

The costs of low-carbon energy fell dramatically over the past decade, leading to rapid growth in 
its deployment. However, many challenges remain to deploy low-carbon energy at a scale 
necessary to meet net zero carbon emission targets. If net zero goals are to be met, developing 
complementary technologies and skills will be a necessary part of the next wave of low-carbon 
energy innovation. These include both improvements in physical capital, such as smart grids to 
aid integration of intermittent renewables, and human capital, to develop the skills workers need 
for a low-carbon economy. We document recent trends in energy innovation and discuss the 
lessons learnt for policy. We then discuss the potential role for complementary innovation in both 
physical capital—using smart grids as an example of how policy can help—and human capital, 
where we show how a task approach to labor informs policy and research on the worker skills 
needed for the energy transition.
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Introduction 

The last two decades have seen massive innovations in how energy is generated and used. 

Hydraulic fracturing has transformed global oil and natural gas markets, so that natural gas could 

replace coal as the primary fuel for electricity generation. Solar photovoltaic prices have 

plummeted, and advances in lithium ion batteries provide promise for both electric vehicles and 

enhanced energy storage. 

Despite these advances, many questions remain. The technological challenges of further 

reducing greenhouse gas emissions are different than the challenges overcome so far. Limiting 

global warming to no more than 1.5° Celsius, which would reduce projected climate change 

impacts, is only possible by achieving zero net carbon emissions by mid-century (IEA, 2021b). 

Meeting today’s most ambitious climate policy goals, such as the European Union’s Fit for 55 plan 

to reduce EU greenhouse gas emissions by fifty-five percent relative to 1990 levels by 2030 or 

California’s goal to rely solely on zero-emission energy sources by 2045, requires replacing vast 

amounts of fossil fuel energy sources with alternative, carbon-free energy sources. Doing so will 

require long-term energy storage solutions and smart grid technologies to integrate these 

intermittent energy sources into the grid (IEA 2021c). A recent report from the International 

Energy Agency (IEA) highlights the need for rapid innovation: 

“Technologies still currently at the prototype or demonstration phase represent around 35 

percent of the cumulative CO2 emissions reductions needed to shift to a sustainable path 

consistent with net-zero emissions by 2070. For today’s early-stage technologies to 

dominate their sectors by mid-century, we would require more rapid innovation cycles 

than in recent energy technology history.” (IEA 2021c, p.22) 

 

We argue that this new wave of low-carbon innovation requires not only rapid innovation, 

but different innovation.  Reducing the cost of low-carbon energy is not enough.  As happened 

with information and communication technologies (Breshnan et al. 2002) and electrification (Gray 
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2013), developing complementary technologies and skills is essential to accelerate adoption of 

low-carbon energy technologies. If net zero goals are to be met, innovation on these 

complementary technologies and the development of worker skills needed by low-carbon 

technologies will be a necessary part of the next wave of low-carbon energy innovation. 

Most of the literature on a low-carbon energy transition focuses on low-carbon energy 

substitutes for fossil fuels, such as wind, solar, or electric vehicles (e.g., Johnstone et al. 2010, 

Aghion et al. 2016). But renewable energy’s intermittent nature poses new challenges for grid 

stability and reliability. As we accelerate the decarbonization transition in the electricity sector, 

further R&D efforts are needed for developing enabling technologies that enhance the flexibility 

of electricity systems and enable more renewables integration, as well as enabling increased 

electrification of the economy, such as a transition to electric vehicles or the production of green 

hydrogen.  Progress on many such enabling technologies lags behind that of wind and solar. 

Moreover, a changing energy landscape requires new human capital. We are, in essence, 

experiencing “technological” change with workers as well, and with few exceptions, such as in the 

European Green Deal, addressing the impact of the energy transition on workers’ reskilling and 

retraining receives less policy support. Yet changing workforce needs matter for several reasons. 

First, the acceleration in renewable energy investments poses a significant threat to workers and 

communities producing fossil fuels. The threats faced by these communities are a barrier to 

political support for carbon pricing and climate policy in the U.S and elsewhere (Weber 2019, 

Vona 2019). Second, new employment opportunities in low-carbon energy sectors will require 

workers with the skills necessary for these jobs (Vona et al. 2018) and the cost of technology 

adoption depends on the availability of the appropriate skills in the workforce. The vast literature 

on the labor market impacts of new technologies highlights that certain skills (e.g., abstract and 
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cognitive) are complementary to new technologies, while others (routine and manual) are 

substituted by them (Autor et al. 2003; Autor 2013).  Last, cognitive skills are also a key input of 

a country’s innovative capabilities.  Their availability is important to solve the remaining 

innovation challenges described in the first part of the paper.  

This paper explores both dimensions of the energy transition. We begin by documenting 

recent trends in energy innovation and discussing the lessons learnt for policy. We then discuss 

the potential role for complementary innovation in both physical capital—using smart grids as an 

example of how policy can help—and human capital, where we show how a task approach to labor 

informs policy and research on the worker skills needed for the energy transition. 

 

Recent Trends in Green Innovation: Lessons for Policy 

Electricity generation is one of the largest contributors to carbon emissions. In 2020, it was 

responsible for thirty-six percent of all power-sector emissions (IEA 2021b). Yet, it is also the 

sector most ready to accelerate progress towards net-zero goals by 2050 (IRENA 2022). The costs 

of electricity generated from renewable sources fell dramatically since 2010, leading to rapid 

growth in the use of renewable sources. These cost reductions are partly attributable to 

technological advances, as described in Table 1. For example, the weighted-average levelized cost 

of electricity from wind decreased by fifty-six percent to USD 0.039/kWh. The cost of utility-scale 

solar photovoltaic generation has seen an even more striking decline over the same period – eighty-

five percent - also positioning it as cheaper than fossil fuels in some locations. 

To illustrate recent innovation trends, Figure 1 presents data on four low-carbon energy 

technologies: solar photovoltaics (PV), wind, hybrid and electric vehicles, and building energy  
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Table 1: Contribution of technology to cost reductions 

Technology 

Reduction in 

levelized 

cost (2010-

20) 

Examples of technological advancements 

Solar PV Utility-scale 85% - Improvements in wafer cutting 

techniques, using diamond wire 

sawing, enabled a reduction in 

polysilicon usage 

- Shift from multi-crystalline to mono-

crystalline cells reduced chemical 

impurities and material defects 

Residential 49% - 82% 

Commercial 50% - 79% 

Concentrating 

solar power Solar 

towers 
48% 

- Use of molten salt heat transfer fluids 

and direct steam generation enabled 

higher temperature and longer thermal 

energy storage duration  

Parabolic 

trough 

collector 

69% (2011-

2019) 

- Improvements in special coatings on 

the absorber tube and in insulation 

measures for the receiver have reduced 

thermal losses 

Wind Onshore 56% - Increase in rotor diameter 

- Increase in hub height 

- Improvements in turbine capacity 
Offshore 48% 

Storage 
Lithium-ion 

cells 

98% (1991-

2018) 

- Improvements in cell energy density 

- Improvements in energy-to-power ratio 

(storage duration)  

Source: IRENA (2022) 
 

 

efficiency. Our patent data come from the European Patent Office (EPO) World Patent Statistical 

Database (PATSTAT), which includes over one hundred million patent applications from ninety 

patent authorities. To control for patent quality, we only include patent applications filed in two or 

more patent offices. Inventors must file a patent at each patent office for which they desire 

protection. Filing in multiple offices is a signal that the patented invention is of higher quality (e.g. 

Lanjouw et al. 1998, Harhoff et al. 2003).5 We use the European Patent Office’s “Y scheme”, 

which provides separate classifications for technologies pertaining to climate change mitigation 

                                                 
5 All filings at regional patent offices such as the EPO are included, as these signal intent to seek protection in 

multiple countries. 
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and adaptation, to identify relevant patents. These classifications complement standard patent 

classification schemes such as the Cooperative Patent Classification (CPC) scheme, grouping 

together relevant technologies that may appear in a wide range of traditional patent classes. Online 

Appendix A lists the patent classes used to identify each technology. 

 

Figure 1: Global Low-carbon Energy Patents  

 

Notes: Figure shows global counts of energy patents for patents filed in two or more countries. Patents are sorted by 

priority year. Patent extractions from the EPO World Patent Statistical Database (PATSTAT). Oil price data are 

$/barrel, in 2022 US dollars, taken from the US Energy Information Administration, Short-Term Energy Outlook, 

June 2022. 

 

Two notable trends stand out. First, each energy technology experiences dramatic growth 

in the early 2010s. For most technologies, global patent counts increased by a factor of three or 
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more from 2006 to 2011. Second, this sudden increase in patenting was followed by a rapid 

decline. The exception is building energy efficiency, which grew less rapidly and plateaued by 

2010. Hybrid and electric vehicle patents experience a second growth wave beginning in 2016. 

A rich literature has developed to better understand the factors influencing the rapid 

changes in energy innovation during the past twenty years (Popp 2019). Understanding what roles 

the private and public sector play is important to develop policy solutions to promote remaining 

innovation needs. Multiple market failures affect energy innovation, and different technologies are 

affected in different ways. As such, no one policy instrument is sufficient. Different policies 

address different market failures and work at different stages of technology development. 

Most importantly, demand matters. Innovators focus on products that customers will want. 

Higher energy prices encourage innovation on alternative energy sources and on some energy 

efficiency technologies. Both Popp (2002) and Verdolini and Galeotti (2011) estimate a 10 percent 

increase in energy prices leads to a 3.5 percent increase in alternative energy and energy efficiency 

patenting. Similarly, when facing higher fuel prices, firms in the automotive industry produce more 

innovations on clean technologies, such as electric and hybrid cars, and less in fossil-fuel 

technologies that improve internal combustion engines when facing higher fuel prices (Aghion et 

al. 2016). A ten percent higher fuel price is associated with about ten percent more low-emission 

energy patents and seven percent fewer fossil-fuel patents. To show that both the recent increase 

and decreases in patenting correspond with energy price trends, Figure 1 plots global oil prices on 

the right axis, using U.S. imported crude oil prices. 

However, higher energy prices alone are not sufficient to fully support low-carbon energy 

innovation. As the prices of wind and solar become competitive with fossil fuels, deployment of 

these technologies increases. Similarly, higher energy prices encourage more investment in energy 
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efficiency. But these investments also provide social benefits from pollution reductions that are 

not reflected in market prices without government intervention. As a result, potential demand for 

low-carbon energy technologies depends on effective environmental policy. Policies addressing 

the environmental externalities from fossil fuels increase the potential market size for low-carbon 

energy innovation, and are often referred to as demand-pull policies. 

The choice of policy tool affects both the pace and direction of innovation. Demand-pull 

policies to promote low-carbon energy can either be technology-neutral or technology-specific. 

Technology-neutral policies provide broad mandates, such as reducing emissions to a certain level 

but leave it to consumers and firms to decide how to comply. Examples include a carbon tax or 

cap-and-trade, which targets all emissions equally. British firms exposed to the European Union’s 

Emissions Trading System (EU ETS) increased patenting by twenty to thirty percent relative to 

similar non-regulated firms (Calel 2020). Weakened regulation, such as falling EU-ETS prices 

after the Great Recession, may also explain the recent decline in low-carbon energy patenting. 

Technology-specific policies stimulate the use of individual technologies. For example, tax 

credits for electric vehicles or rooftop solar energy are only available to consumers who purchase 

these products. Because technology-neutral policies promote technologies closest to being 

competitive in the market without policy support (Johnstone et al. 2010), technology-specific 

policies play an important role for emerging technologies with higher costs. Before the recent wave 

of innovation, the price of onshore wind was competitive with fossil fuels, but solar PV was not. 

As a result, innovation in countries with mandates to provide alternative energy focused on wind. 

In contrast, innovation in solar PV occurred in countries with technology-specific policies 

targeting solar energy. Most notably, German feed-in tariffs were over five times higher for solar 

than for wind (Johnstone et al. 2010). Gerarden (2022) estimates that solar energy subsidies 
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increased demand for solar power by seventy-eight percent between 2010 and 2015, with over half 

of that increase due to lower costs from innovation induced by the subsidies. While Germany was 

the leader on subsidies, eighty-six percent of the benefits of cost decreases from the resulting 

innovation occurred outside Germany, suggesting large spillover benefits. Both studies indicated 

that while technology-specific policies may raise short-term costs, judicious use of them helps 

promote the development of low-emission technologies further from the market, such as offshore 

wind or carbon capture and sequestration.  

When choosing technology-specific policies, the consideration of other market failures 

informs both which technologies to target and which policy instrument to use. Other market 

failures such as learning-by-doing, path dependency, and capital market failures limit incentives 

to invest in emerging energy technologies (Acemoglu et al. 2016, Fischer et al. 2017, Lehmann 

and Söderholm, 2018). Both learning-by-doing and path dependency justify technology-specific 

deployment policies such as feed-in tariffs or tax credits—most notably when the resulting cost-

reductions benefit not only early adopters, but also those who wait to adopt until costs fall (e.g., 

Lehmann and Söderholm, 2018). However, the existing literature on learning-by-doing generally 

suggests that the benefits of learning-by-doing are not sufficient to justify current levels of 

deployment subsidies (e.g., Nemet 2012, Fischer et al. 2017, Tang, 2018). In a cross-country study 

of energy patenting, Nesta et al. (2018) provide evidence on the importance of path dependency. 

Policies promoting low-carbon energy innovation are not successful in countries with little existing 

renewable energy innovation capacity. Command-and-control policies spur low-carbon energy 

innovation at medium levels of capacity. Beyond a high capacity threshold, however, only market 

based policies provide incentives for further low-carbon energy innovation. These results reinforce 

the need to develop the competences, especially the human capital, necessary for green innovation. 
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In contrast, the evidence on capital market failures provides mixed results. Howell (2017) 

provides evidence that early financing through the US Department of Energy Small Business 

Innovation Research (SBIR) program helps overcome capital market failures in low-carbon 

energy. However, Goldstein et al. (2020) find that receiving an early-stage award from the US 

Advanced Research Projects Agency-Energy (ARPA-E) does not significantly decrease the 

probability of exiting compared to comparable but non-participating cleantech startups. Van den 

Heuvel and Popp (2022) reconcile these results, noting that while financial constraints may be a 

burden for low-carbon energy startups, providing public funding for low-carbon energy startups 

does not address demand-side market failures. Increasing demand for low-carbon energy 

technology is key to promoting the success of low-carbon energy investments. 

At the same time, the “public good” nature of knowledge creates spillovers that benefit the 

public as a whole, but not the innovator. Inventors use knowledge created by others as building 

blocks for their own work. For example, Myers and Lanahan (2022) estimate that DOE SBIR grant 

recipients capture just twenty-five to fifty percent of the value of patents generated by their R&D, 

as spillovers from their work generate follow-up innovation by outsiders. Because they do not reap 

the benefits of these spillovers, potential innovators do less research than would otherwise be 

desirable, even if environmental policies to address externalities are in place. Science policy to 

support research performed in both the private and the public sectors helps bridge this gap. 

Examples include direct government funding of research projects and indirect support such as tax 

credits for private-sector research and development. Policies supporting technology development 

directly are often referred to as technology-push policies. 

For technology-push polices, government R&D should play a larger role for cleaner 

technologies if spillovers from green innovation are larger than for other technologies. Both 
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Dechezleprêtre et al. (2017) and Popp and Newell (2012) find that low-carbon energy R&D 

generates large spillovers, comparable to spillovers in other emerging fields such as IT or 

nanotechnology. Noailly and Shestalova (2017) find similar results, but only for emerging 

technologies such as energy storage. Consistent with the notion that government R&D is most 

important for emerging technologies, Costantini et al. (2015) compare patenting in conventional 

first-generation biofuels to patenting in more advanced second-generation biofuels. While 

technology-push policies do not induce innovation for more mature technologies (e.g., first-

generation biofuels), they are important for fostering development in emerging, more advanced 

technologies.  

 

Developing Enabling Energy Technologies 

Economists have just begun to explore explanations of the recent fall in patenting (see, e.g., 

Popp et al. 2022). Whether this decline is problematic depends, in part, on the technology. The 

dramatic decrease in low-carbon energy prices suggests the wave of innovation in the early 2000s 

was successful. In fact, by 2017 solar PV costs had fallen below what experts had earlier predicted 

for the year 2030 (Nemet, 2019)! That electric vehicle patents are increasing again shows that 

technology is still evolving where challenges remain. However, as wind and solar technologies are 

deployed at scale, their intermittent nature will pose a new array of challenges for grid stability 

and reliability. More concerning is that patenting activity also slowed down in technologies that 

have not yet attained maturity and are critical for achieving decarbonization goals (IEA 2021c). 

The IEA estimates that half of the technologies needed to achieve net-zero goals by 2050 are still 

in early stages of development (IEA 2021b). Further R&D efforts are needed to develop 

technologies that enhance the flexibility of electricity systems and enable further renewables 



11 

 

integration. These include technologies to increase electric grid flexibility as well as reduce 

emissions in transportation and industry. Figure 2 shows patent trends for four such enabling 

technologies: batteries for energy storage, EV charging, smart grids, and hydrogen energy. 

 

Figure 2: Global Enabling Technology Patents  

 

Notes: Figure shows global counts of energy patents for patents filed in two or more countries. Patents are sorted by 

priority year. Patent extractions from the EPO World Patent Statistical Database (PATSTAT). Oil price data are 

$/barrel, in 2022 US dollars, taken from the US Energy Information Administration, Short-Term Energy Outlook, 

June 2022. 

 

Notably, patenting in batteries for energy storage did not decline after rapid growth in the 

early 2010s, and is rising once again. However, this trend tracks EV patenting more generally and 

largely targets batteries for electric vehicles. EV charging patents are also increasing, albeit at a 
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slower pace. In contrast, further R&D efforts are needed to develop technologies that enhance the 

flexibility of electricity systems and enable further renewables integration. In 2020, there was total 

of seventeen GW installed storage capacity worldwide in, whereas 148 GW are needed by 2025 

to stay on track for achieving net-zero targets by mid-century (IEA 2021b). Because the market 

for electric vehicle batteries is ten times larger than the market for grid scale batteries, battery 

innovation steered away from alternative technologies that may be better suited to the needs of 

stationary power storage, where size and weight are secondary preoccupations (IEA 2021a). 

Examples of battery technologies that have not achieved the same level of maturity as lithium-ion 

batteries include flow batteries and lithium iron phosphate batteries. The latter present advantages 

that would make it a better candidate for grid-scale storage than the nickel manganese cobalt 

chemistries used in electric vehicle batteries. 

Progress towards the development of dispatchable cleaner energy sources is also needed to 

address hard to decarbonize sectors. Hydrogen energy provides an example that can be used to 

retrofit existing assets and ease the low-carbon energy transition in the short-to-medium run. 

“Green” hydrogen produced from renewable electricity could serve as a means of power storage. 

Both “green” and “blue” hydrogen produced from fossil fuels with carbon capture and storage 

could become an energy source for hard to decarbonize sectors such as iron and steel or heavy 

duty transportation (IEA 2019). 

The level of patenting in smart-grid innovation has been lower than batteries or hydrogen, 

and leveled off slightly below its 2011 peak. Smart grids encompass a range of technologies that 

include—but are not limited to—smart meters, remote and automated sensing, smart switching, 

hierarchical or distributed control architectures and an array of big data analytics and artificial 

intelligence applications. Smart grid innovation will be pivotal in supporting the integration of 
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technologies and new business models that enhance flexibility, such as energy storage, vehicle-to-

grid applications, and demand-response. A modernized grid would leverage a variety of tools from 

both the supply and demand sides to achieve flexibility, in contrast with conventional strategies 

that have relied on controlling power generation. These include demand-side management for 

peak-shaving, electricity storage, vehicle-to-grid and grid-to-vehicle applications, the 

geographical and technological diversification of renewables generation and supergrids. Smart 

grid technologies will be a linchpin in the implementation of these various flexibility tools 

(Martinot, 2016).  

Promoting innovation on enabling technologies faces several challenges. While the costs 

of wind and solar were falling over the past decade, their primary competition came from fossil 

fuels. The goals of low-carbon energy policy at that time were clear—to lower costs and bring 

low-carbon energy to the market as soon as possible. Today low-carbon energy policy operates in 

a more complicated landscape. In many cases, such as electricity generation, renewable energy 

may cost less that fossil fuels. But because of both technological and supply constraints, renewable 

sources can not yet satisfy all our energy needs. Energy policy now operates in a world where 

policy both promotes expanded use of renewables currently ready for the market while still 

needing to provide incentives to develop technologies further from the market that will be 

necessary for full decarbonization. As discussed earlier, no one low-carbon energy technology 

policy is a silver bullet. Identifying the policies needed at different stages of technological 

development is important for promoting the development of enabling energy technologies. 

Innovation on enabling technologies faces several challenges. Green and blue hydrogen 

provide a low-carbon energy alternative for heavy industry, but remain costly (IEA 2019). 

Targeted policies and R&D investment will be needed to bring costs down before these 
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technologies are used at scale. Investments in smart-grid technologies, the integration of 

intermittent renewable energy technologies into the grid, and the adoption of connected vehicle 

infrastructure emphasize improvements in public infrastructure. Better management of the grid 

benefits all users of the grid, including producers of wind and solar energy. Enabling energy 

technologies, such as smart grids, are both more original (relying on a broader base of existing 

technologies) and more radical (building on ideas outside their own technological domain) than 

other technologies (Popp et al. 2022). Technologies such as smart grids enable decentralized 

energy production, implying organizational innovation as well as technological innovation. These 

findings all point to potential large spillovers from enabling technologies, so that targeted demand-

side policies and R&D subsides both have a role to play. 

We use smart grids as an example of the challenges for promoting innovation in enabling 

energy technologies. The smart grid would leverage digital technologies that enable two-way data 

sharing. Building a smarter grid implies developing and deploying both hardware and software to 

collect and utilize highly granular power data in applications that help the grid operate more 

efficiently (Colak et al. 2016). Because a smart grid is an evolved digitalized network featuring 

club goods characteristics, its deployment poses additional challenges beyond those experienced 

in earlier waves of low-carbon energy innovation. First, as more devices connect to the internet, 

the vulnerability of the grid to cyberattacks will surge, posing risks to data privacy and threatening 

to engender service disruptions that could cause substantial material losses (Brown et al. 2018). 

To mitigate these risks, governments and industry have spearheaded standardization initiatives to 

devise cybersecurity architectures and protocols for devices that exchange sensitive data. New 

technologies such as blockchains present an array of potential applications to the grid and hold 

promise for countering cybersecurity threats (Kuzlu et al. 2020). Beyond cybersecurity, the need 
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for grid devices to interconnect in a reliable way may also pose additional challenges to technology 

development and deployment (Grégoire-Zawilski and Popp, 2022). Consensus around 

interoperability protocols may provide direction to technology development and mitigate the risks 

associated with conducting R&D in networked technologies, where changing technology protocols 

may render devices obsolete. There may be a role for governments and industry to join forces in 

coordinating the standards development process. In addition, because this sector of technology is 

fast-moving and smart grid devices generate network externalities, providing subsidies to early 

adopters who are at heightened risks of stranded assets may be justified. 

Grégoire-Zawilski and Popp (2022) analyze the effect of technology standards that 

coordinate technology development on smart grid innovation. Because it involves developing 

digital applications to support the distribution and transmission of electricity, smart grid innovation 

pools expertise from multiple technological domains. Firms that innovate in this space are diverse 

in terms of age, size and technological backgrounds. Knowledge flows across sectors, requiring 

firms to internalize innovations from diverse technological spaces and to design products that can 

work together. Interoperability standards set by national and international standard-setting 

organizations provide specific technological specifications that a product must meet to conform 

with the standard. While these standards are voluntary, the networked nature of smart grid 

innovation supplies incentives for firms to conform with these specifications. For example, 

standard IEC/TR 61850, developed by the International Electrotechnical Commission, defines 

protocols for communication between intelligent devices within power utility automation systems, 

and as such, is crucial to coordinate the deployment of smart grids devices developed by different 

firms.  
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Overall, interoperability standards decrease both the likelihood that a firm develops a smart 

grid patent in a given year (the extensive margin) and how much it patents in that same year (the 

intensive margin). However, these effects vary by type of inventor. After standards are introduced, 

large industry incumbents experience a reduction in patenting at both the intensive and extensive 

margin. Grégoire-Zawilski and Popp (2022) speculate that these firm’s inventive activities take 

place prior to the introduction of standards, so that standardization provides an endorsement of 

their technology. However, the introduction of standards facilitates the entry of new inventors. 

Standards provide information and know-how about accepted practices and technical 

specifications that would otherwise only be available to industry insiders.  

Heterogeneous effects over time provides further insights. Introducing standards early in 

the innovative process facilitates entry, while later standards are associated with a reduction in the 

intensity of patenting. This pattern is consistent with standards both providing information to 

inventors (and thus providing direction to early innovation) while also providing an endorsement 

of specific technologies once they are developed. Whether the subsequent fall in patenting from 

later standards is problematic is unclear, as, standardization could serve as a coordination 

mechanism, whereby the quantity of patents falls because standards steer actors away from 

unpromising research avenues to focus R&D efforts on high reward areas. Thus, the timing of 

standard setting is important. 

The importance of standards is not limited to smart grids. For example, the effectiveness 

of green and blue hydrogen as a fuel depends on safe storage and distribution. With adaptations to 

infrastructure, hydrogen could be blended into natural gas to allow transport using existing natural 

gas pipelines. But equipment modification would be necessary for machines to work with higher 

concentrations of hydrogen. New pipelines and distribution networks could be built, but standards 
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for safely developing this infrastructure need to be agreed upon. Methods to certify the carbon 

content of hydrogen are necessary to allow for trade of hydrogen across countries with different 

climate policies. (IEA, 2019). Standards may play an important role in the development of many 

enabling technologies. 

 

Building skills for a low-carbon energy transition 

Just as enabling technologies prepare energy infrastructure for a low-carbon energy 

transition, so too must the labor force be prepared to work in a changing energy landscape. Already 

we see evidence of this challenge, as a shortage of qualified workers has slowed the construction 

of new nuclear power plants in France (Dalton, 2022). Governments, think-tanks and international 

organizations have growing interest in developing skills for the low-carbon transition (Cedefop 

2019, ILO and Cedefop 2011), especially in the context of the post-Covid recovery packages (IMF 

2022). However, understanding how to prepare workers for the low-carbon energy transition is 

hard due to the lack of appropriate data and widely accepted definitions of green jobs. Many jobs 

are relatively new—or even currently non-existent—because low-carbon energy technologies are 

rapidly evolving, so that the required skills are not clear. Recent research applies the task-based 

approach to labor markets, first developed by David Autor and colleagues (Autor et al. 2003, Autor 

2013), to overcome such difficulties in measuring green skills and jobs relevant for a low-carbon 

energy future (Vona et al. 2018).6 

Two issues make identifying the jobs that benefit from the large-scale diffusion and 

development of low-carbon energy technologies difficult. First, it remains conceptually unclear 

                                                 
6 See Vona (2021) for a detailed discussion of the applications of the task based approach to study the labor market 

implications of the green transition.  
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which technologies and productions could be considered ‘green energy’. For instance, there has 

been a lively debate in the EU on whether gas and nuclear technologies are clean energy 

technologies eligible for government subsidies. Similar definitional problems apply to occupations 

specific to these technologies.  

Secondly, low-carbon energy jobs are relatively new, and thus not covered in standard 

occupational classifications. An occupation could be considered ‘green energy’ when it entails the 

development, production and maintenance of technologies that have the potential to reduce or 

eliminate GHG emissions, but datasets including detailed information on both occupations and 

low-carbon energy investments are rare. To illustrate, a car repairer or a construction worker could 

be green or not depending on the adopted technology and production methods. Unless these 

classifications are split into sub-groups specific to low-carbon tasks (e.g., electric vehicle car 

repairer or solar panel installer), one cannot measure the green engagement of an entire occupation. 

The task approach to labor markets, when combined with detailed datasets on the task 

content of occupations, provides a natural framework to improve both the measurement and the 

conceptual understanding of green occupations. Such an approach has been used to measure 

occupational exposure to the impact of computers, robots and information and communication 

technologies (Autor et al., 2003). Its key feature is the distinction between tasks –a unit of work to 

produce output— and skills—the capability to perform tasks. Factors of production, including 

workers with different skills, compete to perform each task (Acemoglu and Autor, 2011).  

The existing task composition of the economy reflects the current state of the technology. 

In a subsistence economy, most tasks require physical strength, endurance and informal know-

how on plants, animals and weather events. In a knowledge-based economy, problem-solving, 

verbal and writing abilities become valuable economic inputs. Overall, the process of socio-



19 

 

economic development involves both the modification of existing tasks and the emergence of new 

tasks (Vona and Consoli 2015, Acemoglu and Restrepo 2017). Because skills should also be 

updated to perform new tasks, the task approach allows to examine skill gaps at a very granular 

level.  

For the energy transition, new tasks related to low-carbon energy (e.g., climbing wind 

towers to inspect and repair or computer and math skills for smart grid management) replace tasks 

related to coal mining jobs (e.g., operating mining machines to gather coal). The availability of 

appropriate training or educational programs allows workers to become proficient in skills required 

to operate low-carbon energy technologies. A greater supply of necessary skills reduces the cost 

of adopting these technologies. As the development of low-carbon technology unfolds, a skill 

shortage will represent a key barrier to growth for emerging green industries (DNV 2022). 

Targeted training programs are known to be more effective than broad training programs (Rodrik 

and Stantcheva 2021), but reliable information on the specific skills required in specific sectors is 

often lacking. 

Importantly, the willingness of workers to allocate skills to tasks depends on the 

distribution of wage offers across occupations. A materials engineer may not find it profitable to 

specialize in wind energy technologies if the wage offered by a wind farm is lower than the wage 

offered elsewhere in the economy. Wage differences may result from differences in labor 

productivity. In the case of market imperfections, they may also result from rent sharing. Oil 

workers may not accept a renewable energy job requiring a similar set of skills if oil jobs offer a 

higher salary due to rent sharing in the oil sector.  
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Application of the task approach to the green transition 

The task approach has been used only recently to study the labor market aspects of the low-

carbon energy transition. Instead, earlier empirical research focused on the spatial dimensions of 

job gains and losses concentrating on job multiplier effects of industrial activities (Moretti 2010)–

i.e., local jobs indirectly created by an energy job. The well-known case is the labor market effects 

of booms and busts in oil, gas and coal markets. These are extremely concentrated in certain 

communities (e.g., Black et al. 2005, Marchand 2012) and thus can trigger a political backlash 

against green policies (Vona 2019, Weber 2020). Recently, this spatial approach has been used to 

study green job creation in general (Vona et al. 2019) and the specific case of wind and solar 

energy (Fabra et al. 2022). The task approach complements the spatial approach, and potentially 

can be combined with it, by informing policymakers on specific retraining requirements for the 

low-carbon energy transition.  

Implementing the task-based approach to study green jobs and skills requires appropriate 

data. Researchers need data on the task and skill content of occupations. The main dataset with 

such characteristics is the online Occupational Information Network (O*NET), which is available 

since 2000. For approximately 1000 occupations, O*NET contains information on both the tasks 

expected of workers and the skills needed to complete these tasks. Skills potentially apply to all 

occupations. For each occupation, the skills used are given a one to five importance score. Tasks 

are unique to each occupation and are text descriptions that can be represented as a binary piece 

of information. Importantly, O*NET has a special section devoted to identifying green jobs and 

tasks: the ‘Green Economy Program’, developed to provide a definition of what is a green job 

(Dierdorff et al. 2009).  
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The information contained in the ‘Green Economy Program’ can be used to identify green 

jobs based on two types of definitions: i) a binary definition where an occupation is considered 

either green or non-green; ii) a continuous definition of occupational greenness as the share of the 

number of green tasks over total tasks.7 The latter definition, first proposed by Vona et al. (2018 

2019), can be interpreted as the amount of time spent on green activities and technologies by the 

average worker employed in a certain occupation. The continuous indicator provides a more 

accurate characterization of the exposure of an occupation to green technologies and production. 

For instance, the binary definition considers construction laborers fully green. Using the 

continuous definition, their occupational greenness is below 0.3, reflecting the fact that tasks 

performed by these occupations can be green (i.e. performing building weatherization tasks) or not 

(i.e., mixing ingredients to create compounds for covering or cleaning surfaces). The share of green 

employment measured using the continuous indicator is around two to three percent, which is in 

line with estimates using occasional surveys on green production (e.g. Elliott and Lindley, 2017). 

The share of green employment using the binary definition is almost 4 times larger.  

An accurate measure of occupational greenness allows researchers to identify which skills 

potentially applicable to all occupations are important for green technologies. Vona et al. (2018) 

introduce a methodology to identify skills that have a comparative advantage in performing a green 

task. For over 100 skills included in O*NET, the authors regress a skill’s importance score in each 

occupation on that occupation’s greenness indicator, controlling for higher level occupation groups 

to compare both green and non-green jobs in similar occupations. Using this procedure, they 

identify sixteen green skills, which are ranked and clustered together using principal component 

analysis. The resulting four groups of green skills are Engineering and Technical, Operation 

                                                 
7  See online Appendix B for details. 
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Management, Monitoring, and Science (see online Appendix B for further details). These green 

skill indicators help illuminate important aspects of the labor market impacts of green policies. 

Demand for workers with green skills, especially engineering and technical skills, increases in 

areas exposed to a more stringent environmental regulation relative to a credible counterfactual.  

In the only comprehensive paper covering the low-carbon energy transition, Saussay et al. 

(2022) use the universe of online job ads in the US to observe directly green (i.e., EV car repairer) 

and non-green (i.e., traditional car repairer) job posts within an occupation. The job vacancy data 

allow comparing the skillset of green energy—identified using natural language processing 

techniques--and non-clean energy ads within very narrow occupational groups. The authors find 

that a low-carbon energy job ad has a higher skill complexity than similar job ad not only in terms 

of technical and engineering skills, but also of IT, social and cognitive skills. 

To illustrate the importance of green skills, Popp et al. (2021) show that the job creation 

effect of green spending in the US American Recovery and Reinvestment Act (ARRA) is stronger 

in local labor markets with a larger pre-existing base of green skills. Overall, green ARRA 

investments reshaped local economies, leading to permanent job creation for manual and green 

labor. That the jobs created are primarily manual labor is consistent with the focus of ARRA 

investments, which included significant funds for energy efficiency retrofits and installation of 

new wind and solar resources. Compared to the average community, forty percent more jobs were 

created in communities with the highest prevalence of pre-existing green skills. Thus, workers 

must have the skills needed in green jobs for green fiscal stimuli to be successful. Relevant to the 

low-carbon energy transition, the authors show that skill gap between low-carbon energy and fossil 

fuel workers is modest. However, green jobs require significantly more training. As such, 

retraining programs reinforcing and developing technical skills are essential to prepare the 
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workforce to the low-carbon energy transition. Connecting the task approach to green skills to 

earlier work on spatial discrepancies, the authors show that communities whose economies are 

dependent on fossil fuels have a wide range of green skills. Some such communities, particularly 

in the West and Midwest have a large share of workers with green skills and appear well-prepared 

for the low-carbon transition. In contrast, Appalachian communities face both dramatic decreases 

in demand for coal and a lack of workers with green skills. Thus, skill discrepancies may 

exacerbate regional inequities associated with the low-carbon energy transition. 

 

Some new evidence on low-carbon energy occupations 

The classification of green occupations provided in previous research using O*NET stacks 

together different environmental problems, without a specific focus on green jobs and skills needed 

for the low-carbon energy transition. The papers of Saussay et al. (2022) and Popp et al. (2021) 

are two distinct exceptions. However, the former paper uses confidential data on job vacancy, 

while the latter focuses on a narrow definition of green energy jobs, mostly focusing on wind and 

solar occupations  

To provide a concrete and novel illustration of the advantages of the task-based approach, 

we build on Popp et al. (2021) by considering high-skilled occupations only and using a broader, 

continuous, definition of low-carbon (“green”, as in earlier literature) energy occupations (online 

Appendix B). The broader definition allows us to cover green energy tasks beyond power 

generation, notably buildings and mobility. The focus on high-skilled occupations is in line with 

the fact that high-skilled talents are an essential input in the production of new knowledge, which 

is required to address the remaining challenges of decarbonization. Obviously, low-skilled talents 
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are also essential especially in the production phase of technological development, but the 

abovementioned work of Popp et al. (2021) is quite exhaustive in this respect.  

Finally, we enrich previous analyses on the skill content of green jobs by pairing 

information on skill requirements from O*NET with data on the main field of study of workers 

from recent waves of the American Community Survey (see online Appendix C for details). 

Education data capture part of the adjustment in the supply side of workers.  

 

Table 2: Skill profiles of Green Energy, Brown Energy and Other Similar Occupations 

  

Green energy 

HS occ 

Brown fossil 

HS occ 

Other: 3-digit 

HS occ with at 

least 1 green 

energy  

Share of tot employment 1.05% 0.02% 11.31% 

Hourly wage 38.45 46.16 34.23 

Education and training       

Required years of educ (from O*NET) 15.68 16.88 15.33 

Required years of training (from O*NET) 2.37 1.85 2.03 

Years of education (from ACS) 14.78 16.10 14.69 

College share (from ACS) 59.48% 90.87% 56.44% 

Post-graduate share (from ACS) 20.92% 39.13% 21.35% 

Skills measure from O*NET (range 1-5)       

Green Skill: eng & tech 2.93 2.85 2.37 

Green Skill: operation manag 3.47 3.60 3.44 

Green Skill: science 2.20 3.05 1.80 

Green Skill: monitoring 3.54 3.32 3.42 

Field of study        

Degree in STEM fields 27.97% 59.44% 14.89% 

Degree in Engineering fields 22.48% 21.31% 9.96% 

Degree in STEM fields (if graduate=1) 47.02% 65.41% 26.38% 

Degree in Engineering fields (if 

graduate=1) 
37.79% 23.45% 17.65% 

Notes: elaboration from American Community Survey, average 2009-2019, data and O*NET data 

24.0. 

 

Table 2 presents the profiling of high-skilled (HS) green energy, brown energy and other 

occupations (neither green nor brown) in a 3-digit SOC group that contains a green energy 
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occupation, so that we compare the characteristics of similar occupations. Green energy 

employment is weighted by the product of each occupation’s employment share and greenness as 

in Vona et al. (2019). These weights take advantage of the task-based definition of green 

employment, where many occupations are only partially green. Note first that green energy HS 

occupations represent slightly more than one percent of total employment, while high-skilled 

brown energy occupations only 0.02 percent. This exceeds estimates using job vacancy data 

(Saussay et al., 2022) because—to observe the field of study—we use American Community 

Survey data that are slightly more aggregated than Bureau of Labor Statistics data, leading to a 

well-known overstatement of the size of the green economy (see Vona 2021 for details).  

On average, green energy HS workers earn 12.3 percent more than other HS occupations, 

but twenty percent less than HS brown energy ones. This is consistent with the well-known rent 

sharing in fossil fuel sectors, but it is also explained by a higher intensity of all the human capital 

measures presented in the table. Next, the green wage gap between green and other occupations is 

not matched by similar gaps in the educational level required (from O*NET) or observed (from 

ACS). As in Popp et al. (2021), green energy jobs require more on-the-job training, but four 

additional months of training can hardly account for a green wage gap of 12.3 percent. The second 

panel of the Table highlights differences in O*NET-based measures of skills that reflect the 

competences demanded by employers. Not surprisingly, we observe a very large gap in two out of 

four green skills, namely engineering and science skills. Because the use of science and 

engineering skills in the workplace is positively correlated with earnings, this gap could partly 

explain the green wage gap.  

The last panel of the Table uses data on field of study to illustrate the Science, Technology, 

Engineering and Mathematical (STEM)-bias of green occupations. Green energy occupations are 
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more STEM-intensive than similar occupations. STEM graduates, particularly in engineering, are 

more likely to work in the low-carbon energy sectors. Relative to similar occupations, a STEM 

graduate is almost twice as likely to work in green energy occupations than in similar occupations. 

This implies that STEM talents seem to have the right incentives to work in green energy jobs, 

thus enhancing the US green innovation potential.  

However, competition for STEM talents has increased tremendously in recent decades. 

This has not been caused by the fracking boom as brown energy jobs absorb just a very tiny fraction 

of STEM talents. Rather, competition of fintech and digital giants attracts more STEM talents 

(Marin and Vona 2022). To shed light on the incentives of STEM graduates to work in green 

energy occupations with respect to finance and other high-tech occupations, we estimate the 

returns of STEM graduates in different occupations, conditional on a host of intervening factors 

that are standard in wage regressions (see online Appendix C for details). A virtue of the task 

approach rests indeed in the possibility to evaluate the returns of different skill-task matches at the 

worker level. Figure 3 plots the worker-level estimates of the returns to STEM graduates in four 

different positions (finance occupations, STEM non-green occupations, green energy occupations 

and other non-STEM occupations8) relative to the baseline category of any other college graduate. 

We find that STEM graduates earn significantly more in finance or in STEM occupations than in 

green energy occupations, and that the gap is widening over the last four years. Still, the descriptive 

evidence presented in Table 2 shows that STEM graduates go to work in clean energy jobs. 

However, Figure 3 suggests that the brightest STEM talents will be more attracted by other 

innovative sectors, such as fintech, algorithmic trading and AI, limiting the global innovative 

capabilities in green energy technologies. This is just a conjecture that should be corroborated by 

                                                 
8 We do not include fossil-fuel jobs in the comparison because they are too few STEM graduates working in such 

occupations in the ACS dataset.  
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richer and more detailed analyses. The goal here is to propose an approach that enables studying 

issues related to skill gaps, reallocation costs and potential talents’ misallocation towards “less 

socially desirable” technological trajectories.  

 

Figure 3: Estimated returns of STEM degrees in different occupations 

 

 

Notes: elaboration on ACS data. Point estimates and confidence intervals 95% level are reported. Returns to STEM 

graduates are weighted by sampling weights. Only college graduates in high-skilled occupations aged between 22 and 

64 are included in the estimation sample. Regressions are weighted using person sampling weights. Standard errors 

clustered by industry, occupation and age group in parenthesis. Further details on the regressions are given in online 

Appendix C. 
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Conclusions 

The energy transition is entering a new phase, where further cost reductions are not enough.  

If net zero carbon emission goals are to be met, developing complementary physical and human 

capital that reduce the cost of low-carbon energy adoption and enable low-carbon energy to be 

applied more broadly will be necessary. Technologies that store energy or improve grid 

management make it easier to integrate intermittent renewable sources into electricity grids.  

Increased penetration of electric vehicles requires mechanics trained to work on them. 

To promote innovation on enabling physical capital technologies, we note the important 

role of targeted demand and supply side policies emphasized in recent literature on energy 

innovation. Broad-based technology neutral policies incentive the use of least cost technologies.  

But simply relying on technologies already market-ready cannot deliver a zero carbon economy.  

Developing complementary technologies or technologies for niche markets requires a portfolio of 

policies that target specific technological needs. To provide inventors as much room as possible to 

devise innovative solutions, governments choosing to implement such policies should identify and 

target market failures serving as barriers to needed technologies. 

The complementarity between technologies, as well as between capital and labor, also 

require attention.  Smart-grids provide an example where technology standards play a guiding role 

so that a diverse set of technologies can work together. Yet this is just one example.  Standards 

will play important roles for developing electric vehicle charging infrastructure or the provision 

and delivery of hydrogen energy. 

But innovation does not stop with physical capital.  Changing technology requires a 

changing workforce.  Using the task-based approach to labor, we discussed the skills likely to be 

in demand in a clean-energy economy.  Informing policymakers on the exact type of skills and 
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education required is possible only with a granular approach such as that proposed within the task 

model. Low-carbon energy jobs make more intensive use of STEM skills such as science and 

engineering than other comparable jobs.  Note that some engineering and technical skills (e.g., 

mechanics, building and construction) are not necessarily correlated with higher level of formal 

education, which is consistent with the fact that green occupations require more on-the-job training 

than similar occupations. Governments have a natural advantage to invest in training and new 

educational programs for green jobs, given the high fixed costs characterizing such investments 

While the impact on workers shares many similarities to the impact of innovation on 

physical capital, there are also important differences.  Low-carbon energy policy aims to make 

inefficient, dirtier technologies obsolete.  That is part of the point.  But doing so risks making some 

workers skills obsolete as well.  Green jobs require workers with STEM skills, but also pay less 

than many other STEM-intensive occupations.  Simply within the energy sector, fossil fuel 

workers earn higher wages. Workers don’t want to be retrained to move to a sector that pays theme 

less.  Addressing the distributional issues of energy policy on workers is important to gain political 

support for low-carbon energy policies. 
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Appendix A: CPC classifications for energy technologies 

Clean Energy Technologies 

Building Energy Efficiency 

Y02B 20/00 Energy efficient lighting technologies, e.g. halogen lamps or gas discharge 

lamps (and all of its subclasses: 20/30, 20/40, 20/72) 

Y02B 30/00 Energy efficient heating, ventilation, or air conditioning [HVAC] (and all 

of its subclasses: 30/12, 30/13, 30/17, 30/18, 30/52, 30/54, 30/56, 30/62, 

30/625, 30/70, 30/90) 

Y02B 40/00 Technologies aiming at improving the efficiency of home appliances, e.g. 

induction cooking or efficient technologies for refrigerators, freezers or 

dish washers (and all of its subclasses: 40/18) 

Y02B 50/00 Energy efficiency technologies in elevators, escalators, and moving 

walkways, e.g. energy saving or recuperation technologies  

Y02B 80/00 Architectural or constructional elements improving the thermal 

performance of buildings (and all of its subclasses: 80/10, 80/22, 80/32) 

 

Solar photovoltaic (PV) 

Y02E 10/50 Photovoltaic (PV) energy (and all of its subclasses: 10/52, 10/541, 10/542, 

10/543, 10/544, 10/545, 10/546, 10/547, 10/548, 10/549, 10/56) 

 

Wind energy 

Y02E 10/70 Wind energy (and all of its subclasses: 10/72, 10/727, 10/728, 10/74, 

10/76) 

 

Hybrid and Electric Vehicles 

Y02T 10/62 Hybrid vehicles 

Y02T 10/64 Electric vehicles 

Y02T 90/14 Plug-in electric vehicles 
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Enabling Technologies 

Smart grids (except for vehicle charging) 

Y02B 70/30 Systems integrating technologies related to power network operation and 

communication or information technologies for improving the carbon 

footprint of the management of residential or tertiary loads, i.e. smart grids 

as climate change mitigation technology in the buildings sector, including 

also the last stages of power distribution and the control, monitoring or 

operating management systems at local level (and all of its subclasses: 

70/3225, 70/34) 

Y02B 90/20 Smart grids as enabling technology in the buildings sector 

Y02E 40/70 Smart grids as climate change mitigation technology in the energy 

generation sector 

Y04S 10/00 Systems supporting electrical power generation, transmission or 

distribution (and all its subclasses: 10/12, 10/123, 10/126, 10/14, 10/16, 

10/18, 10/20, 10/22, 10/30, 10/40, 10/50, 10/52) 

Y04S 20/00 Management or operation of end-user stationary applications or the last 

stages power distribution; Controlling, monitoring or operating thereof 

(and all of its subclasses: 20/12, 20/14, 20/20, 20/221, 20/222, 20/242, 

20/244, 20/246, 20/248, 20/30).   

Y04S 40/00 Systems for electrical power generation, transmission, distribution or end-

user application management characterised by the use of communication 

or information technologies, or communication or information technology 

specific aspects supporting them (and all of its subclasses: 40/12, 40/121, 

40/124, 40/126, 40/128, 20/18, 40/20).  

Y04S 50/00 Market activities related to the operation of systems integrating 

technologies related to power network operation and communication or 

information technologies (and all of its subclasses: 50/10, 50/12, 50/14, 

60/16). 

 

Electric vehicle charging 

Y02T 90/12 Electric charging stations 

Y02T 90/167 Systems integrating technologies related to power network operation and 

ICT for supporting the interoperability of electric or hybrid vehicles, i.e. 

smart grids as interface for battery charging of electric vehicles [EV] or 

hybrid vehicles [HEV] (NOTE: documents tagged under Y02T 90/167 are 

concurrently tagged under Y04S 30/10) 

Y04S 30/00 Systems supporting specific end-user applications in the sector of 

transportation (and all of its subclasses: 30/10, 30/ 12, 30/14) 

 

Energy storage using batteries 

Y02E 60/10 Energy storage using batteries 

 

Hydrogen and fuel cells 

Y02E 60/30 Hydrogen technology (and all of its subclasses: 60/32, 60/36) 

Y02E 60/50 Fuel cells 
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Appendix B: Green Skills Data Sources and Measures 
Occupational Information Network. O*NET is the standard data source to implement the 

task-based approach since 2000. The predecessor of O*NET is the US Dictionary of Occupation 

and Titles (DOT), developed in 1939 by the United States Employment Service. Experts rated the 

extent to which a particular task (e.g. handling and moving objects) or skill (e.g. math) is important 

in an occupation. Rates were assigned either on a 1-to-5 scale or as a dichotomous variable 

(yes/no). After reaching its revised 4th edition in 1991, the DOT was replaced by the online 

Occupational Information Network (O*NET) in 2000.9 Not only has O*NET dramatically 

expanded the range of skills and work activities (from around 44 in DOT to more than 400 in 

O*NET), but it has also added detailed text descriptions for a sub-set of tasks specific to each 

occupation.10 More specifically, O*NET contains information on both tasks (e.g. what workers are 

expected to do at the workplace – the ‘demand side’) and skills (e.g. the abilities and competences 

that workers should possess to perform work tasks - the ‘supply side’). Skills are defined for all 

occupations with a 1-5 importance score attached, while tasks are text descriptions unique to each 

occupation and thus can be represented as a binary piece of information. The downside of O*NET 

is that occupational descriptions are available for only 900 occupations.11 In turn, DOT defines 

skill contents at the level of approximately 12,000 job titles, where a job title can be seen as the 

most granular sub-level of an occupation. The O*NET data have been used in countless 

applications in labor economics, published in both top general and field journals in the discipline.  

O*NET has a special section devoted to identifying green jobs and tasks: the ‘Green 

Economy Program’ (maintained together with the US Department of Labor), developed to provide 

a definition of what is green and is mostly inspired by the output definition (see Dierdorff et al., 

2009). The information contained in the ‘Green Economy Program’ can be used to identify green 

jobs based on two types of definitions: i) a binary definition where an occupation is considered 

either green or non-green; ii) a continuous definition of occupational greenness that, as we will 

see, exploits information on the greenness of the task content of occupations.  

                                                 
9 The interested reader can explore the online resources of O*NET: https://www.onetonline.org/ and the entire 

database: https://www.onetcenter.org/database.html#individual-files.  
10 O*NET also changed the methodology to collect the data from using only expert judgement to the combination of 

expert judgment and incumbents’ surveys. 
11 This roughly corresponds to the 6/8-digit level of Standard Occupational Classification (SOC). 

https://www.onetonline.org/
https://www.onetcenter.org/database.html#individual-files
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Occupational greenness indicator is defined as the ratio between the number of green specific 

tasks and the total number of specific tasks done in occupation k: 

 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑘 =
#𝑔𝑟𝑒𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑎𝑠𝑘𝑠𝑘

#𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑎𝑠𝑘𝑠𝑘
.  

The Greenness index varies continuously between zero and one. 

 

Table B1: Green Skills (from Vona et al., 2018) 

Engineering & Technical 

2C3b Engineering and Technology 

2C3c Design 

2C3d Building and Construction 

2C3e Mechanical 

4A3b2 
Drafting, Laying Out, and Specifying Technical Devices, Parts, 

and Equipment 

4A1b3 
Estimating the Quantifiable Characteristics of Products, Events, 

or Information 

Operation Management 

2B4g Systems Analysis 

2B4h Systems Evaluation 

4A2b3 Updating and Using Relevant Knowledge 

4A4b6 Provide Consultation and Advice to Others 

Monitoring 

2C8b Law and Government 

4A2a3 Evaluating Information to Determine Compliance with Standards 

Science 

2C4b Physics 

2C4d Biology 

 

Green skills, further details. The detailed list of the 16 green skills is provided in Table B1. 

Engineering and Technical skills encompass skills required in several stages of technology, 

including design, construction and installation. As shown in Vona et al. (2018), these skills are 

very important also in low- and middle-skills occupations such as Solar Installers, Weatherization 

Workers and Technicians. Operation Management skills are associated with new organizational 

practices needed in greener activities; in particular, with continuous assessment and adaptive 

business practices. Relevant examples of professions intensive in Operation Management skills 

are Sustainability Specialists, Chief Sustainability Officers and Supply Chain Managers. 

Monitoring skills include legal, administrative and technical activities necessary to comply with 

regulatory standards. Key occupations using these skills intensively include Environmental 
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Compliance Inspectors and Emergency and Management Directors and Legal Assistants. Science 

skills are obviously important in the first stages of the innovative process. Occupations with high 

scores in this skill can either have specific knowledge applicable to environmental issues, such as 

Materials Scientists or Hydrologists, or be more general know-how, such as Biophysicists and 

Biologists. 

 

Green and brown energy occupations. The lists of green energy and brown energy 

occupations are reported in Tables B2 and B3, respectively. The list of green energy occupations 

also reports the greenness index. The lists are broader than those considered by Popp et al. (2021). 

While our analysis focus in the paper is on high-skilled green energy occupations only, for sake of 

completeness we report the low-skilled ones as well. High-skill occupations comprise SOC groups 

between 11 and 29. Green energy STEM occupations are those contained in the three broad STEM 

occupational groups: SOC 13, SOC 17 and SOC 19. To provide an example of a green energy 

occupation, consider the occupation “Electrical Engineer”.  The occupation has a greenness of 

16%, meaning that the average electrical engineer in the US works 16% of the time on green tasks. 

Examples of non-green tasks for this occupation are “Design, implement, maintain, or improve 

electrical instruments, equipment, facilities, etc.” or “Prepare specifications for purchases of 

materials or equipment”. Example of green energy tasks are “Develop systems that produce 

electricity with renewable energy sources, such as wind, solar, or biofuels” or “Integrate electrical 

systems with renewable energy systems to improve overall efficiency”. 
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Table B2: List of green energy occupations used in the paper 

soc2018 description greenness 

11-3071.00 Transportation, Storage, and Distribution Managers 0.185 

11-9021.00 Construction Managers 0.251 

11-9041.00 Architectural and Engineering Managers 0.178 

11-9041.01 Biofuels/Biodiesel Technology and Product Development Managers 1.000 

11-9199.01 Regulatory Affairs Managers 0.111 

11-9199.02 Compliance Managers 0.174 

11-9199.09 Wind Energy Operations Managers 1.000 

11-9199.10 Wind Energy Development Managers 1.000 

13-1041.07 Regulatory Affairs Specialists 0.144 

17-2011.00 Aerospace Engineers 0.461 

17-2051.00 Civil Engineers 0.452 

17-2051.01 Transportation Engineers 0.179 

17-2071.00 Electrical Engineers 0.161 

17-2072.00 Electronics Engineers, Except Computer 0.197 

17-2081.00 Environmental Engineers 1.000 

17-2141.00 Mechanical Engineers 0.277 

17-2141.01 Fuel Cell Engineers 1.000 

17-2141.02 Automotive Engineers 0.298 

17-2161.00 Nuclear Engineers 0.331 

17-2199.03 Energy Engineers, Except Wind and Solar 0.953 

17-2199.10 Wind Energy Engineers 1.000 

17-2199.11 Solar Energy Systems Engineers 1.000 

17-3023.00 Electrical and Electronic Engineering Technologists and Technicians 0.212 

17-3027.01 Automotive Engineering Technicians 0.278 

17-3029.08 Photonics Technicians 0.146 

19-2021.00 Atmospheric and Space Scientists 0.462 

19-2041.01 Climate Change Policy Analysts 1.000 

19-2099.01 Remote Sensing Scientists and Technologists 0.072 

19-3051.00 Urban and Regional Planners 0.360 

19-4042.00 Environmental Science and Protection Technicians, Including Health 1.000 

19-4043.00 Geological Technicians, Except Hydrologic Technicians 0.144 

19-4051.00 Nuclear Technicians 0.384 

19-4099.03 Remote Sensing Technicians 0.116 

41-4011.07 Solar Sales Representatives and Assessors 1.000 

47-2061.00 Construction Laborers 0.158 

47-2152.04 Solar Thermal Installers and Technicians 1.000 

47-2181.00 Roofers 0.301 

47-2211.00 Sheet Metal Workers 0.214 

47-2231.00 Solar Photovoltaic Installers 1.000 

47-4011.00 Construction and Building Inspectors 0.264 

47-4011.01 Energy Auditors 1.000 

47-4099.03 Weatherization Installers and Technicians 1.000 
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49-3023.00 Automotive Service Technicians and Mechanics 0.440 

49-9021.00 Heating, Air Conditioning, and Refrigeration Mechanics and Installers 0.132 

49-9071.00 Maintenance and Repair Workers, General 0.135 

49-9081.00 Wind Turbine Service Technicians 1.000 

49-9099.01 Geothermal Technicians 1.000 

51-8011.00 Nuclear Power Reactor Operators 0.275 

51-8013.00 Power Plant Operators 0.601 

51-8013.03 Biomass Plant Technicians 1.000 

51-8013.04 Hydroelectric Plant Technicians 1.000 

51-8099.01 Biofuels Processing Technicians 1.000 

53-6051.07 Transportation Vehicle, Equip. and Systems Inspect., Except Aviation 0.436 

Notes: authors' elaborations from O*NET 24.0 dataset     

 

 

Table B3: List of brown energy occupations used in the paper 

soc2018 Description 

17-2151 Mining and Geological Engineers, Including Mining Safety Engineers 

17-2171 Petroleum Engineers 

19-2042 Geoscientists, Except Hydrologists and Geographers 

47-5011 Derrick Operators, Oil and Gas 

47-5012 Rotary Drill Operators, Oil and Gas 

47-5013 Service Unit Operators, Oil and Gas 

47-5041 Continuous Mining Machine Operators 

47-5061 Roof Bolters, Mining 

53-7033 Loading and Moving Machine Operators, Underground Mining 

47-5071 Roustabouts, Oil and Gas 

47-5081 Helpers--Extraction Workers 

51-8013 Power Plant Operators 

51-8092 Gas Plant Operators 

51-8093 Petroleum Pump System Oper., Refinery Oper., and Gaugers 

53-7072 Pump Operators, Except Wellhead Pumpers 

53-7073 Wellhead Pumpers 

47-5043 Roof Bolters, Mining 

47-5044 Loading and Moving Machine Operators, Underground Mining 

Notes: source SOC 2018 classification 
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Appendix C: STEM Wage Data Sources and Methods 
 

American Community Survey Data. The main source of information about STEM degrees 

and to estimate the green wage premium for STEM workers is the American Community Survey 

(ACS). From 2000, this survey retrieves demographics (e.g., gender, age, ethnicity) and 

socioeconomic information (e.g., educational attainment, occupation, wage, sector of work) for a 

1% representative sample of the US population. The individual-level data are publicly available in 

the Integrated Public Use Microdata Series, known as IPUMS. For the purposes of this paper, we 

only use ACS data for the period 2009-2019 where information on the degree field of study is 

available. We focus our attention on employed individuals in working age (16-64 years old, or 22-

64 when we consider the sub-sample of college graduates).  

The partition of the degree field of study into Science, Technology, Engineering and Math 

and non-STEM is standard in the literature (see Marin and Vona 2022). Following Marin and Vona 

(2022) and the associated literature in labor economics, we classify as STEM the occupation 

belonging to SOC groups 15 (computer and math occupations), 17 (architecture and engineering) 

and 19 (life and physical scientists, but excluding social scientists). A STEM graduate working is 

a STEM occupation is a “natural matching”. A STEM graduate is a graduate in the following field 

of study: science; computer science; math and engineering. Because some STEM occupations are 

green, we further partition the group of STEM occupations into green and non-green. Non-green 

STEM occupations are all the 6-digit occupations in SOC groups 15, 17 and 19 that are not 

included in Table B2.12 Finally, Marin and Vona (2022) find that the returns to STEM reach the 

highest level in finance occupations, thus we consider the group of finance occupations (SOC 13-

2, financial specialists, and SOC 11-3031, financial manager).  

 

More details on the estimating equation. 

Here, we provide essential details on the methodology used to estimate the returns to STEM 

graduates in different occupations. For further details, the interested reader can refer to the related 

paper of Marin and Vona (2022).  

We compare the wage of a STEM graduate in occupations where STEM skills are more 

important (finance, non-green STEM occupations and green STEM occupations) with the wage of 

                                                 
12 A complete list of 6-digit SOC occupations can be found here: https://www.bls.gov/oes/current/oes_stru.htm.  

https://www.bls.gov/oes/current/oes_stru.htm
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a STEM graduate in any other occupations, i.e., the benchmark category. For each year between 

2009 and 2019, we estimate the following equation at the individual i level: 

 

log (𝑤𝑖) = 𝜀𝑖 + 𝐗𝑖
′𝜽 + 𝛽1𝑆𝑇𝐸𝑀𝑖 + 𝛽2𝑓𝑖𝑛𝑎𝑛𝑐𝑒_𝑜𝑐𝑐𝑘 + 𝛽3𝑓𝑖𝑛𝑎𝑛𝑐𝑒_𝑜𝑐𝑐𝑘 × 𝑆𝑇𝐸𝑀𝑖

+ 𝛽4𝑆𝑇𝐸𝑀_𝑜𝑐𝑐𝑘 + 𝛽5𝑆𝑇𝐸𝑀_𝑜𝑐𝑐𝑘 × 𝑆𝑇𝐸𝑀𝑖 + 𝛽6𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑘 + 𝛽7𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑘

× 𝑆𝑇𝐸𝑀𝑖, 

 

where the dependent variable is the log of the hourly wage, 𝜀𝑖 is an error term and 𝐗𝑖
′ a vector of 

standard controls in wage equations.13 The variable of interests are: i. 𝑆𝑇𝐸𝑀𝑖, dummy equal one 

for worker with a STEM degree; ii. 𝑓𝑖𝑛𝑎𝑛𝑐𝑒_𝑜𝑐𝑐𝑘, a dummy equal one for workers in finance 

occupations; iii. 𝑆𝑇𝐸𝑀_𝑜𝑐𝑐𝑘, a dummy equal one for workers in finance occupations; iv. 

𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑘, the occupational greenness defined above; the full set of interaction between STEM 

degree, on the one hand, and occupational dummies/greenness, on the other. Thus, the returns to 

STEM are estimated exploiting variation across occupations conditional on a very rich set of 

controls, which however does not fully eliminate concern for non-random sorting of workers with 

different unobservable skills in different occupations.  

For each year, the plotted returns to STEM in green occupations are obtained as 

follows: �̂�1 + �̂�6𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +�̂�7𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Plotted returns in finance (resp. STEM) occupations 

are:  �̂�1 + �̂�2+�̂�3 (resp. �̂�1 + �̂�4+�̂�5).  

 

 

                                                 
13 These controls are: 2-years bins of age interacted with gender, 2-digit NAICS sector dummies, metro-area dummy, 

dummy for married individuals, dummy for black individuals, dummy for other non-white individuals, dummy for 

foreign-born individuals, a dummy for individuals with post-graduate education, occupation-level importance of math 

skills and social skills from O*NET. Regressions are weighted using person sampling weights. Only college graduates 

aged between 22 and 64 are included in the estimation sample. Standard errors clustered by industry, occupation and 

age group in parenthesis. 




